Plant Transformation

Location

Morgenstelle 1
2. Stock, Raum Nr.218

Morgenstelle 32
5. Stock, Raum 5X17

phone 73223


Booking Trafos

Equipment

4 sterile benches, growth rooms

sterile bench

 

Our New Bench: Mission Impossible...


Coordinator

Dr. Kenneth W Berendzen


Transformation technicians

Caterina Brancato
Caterina Brancato

 

 



 

Nach oben



Service provided by Caterina

Transformation Unit Protocols


Cell Culture 01.doc
Cell Culture


BY-2-protopl.doc
BY-2 Tobacco Cell Suspensions Protoplasts


PEG Cell Susp Transf Protopl2017.pdf

Protoplasts from cell culture

 

Please cite for the protoplast transfection protocol beginning Feb. 2017:

Mehlhorn D.G., Wallmeroth N., Berendzen K.W., Grefen C. (2018) 2in1 Vectors Improve In Planta BiFC and FRET Analyses. In: Hawes C., Kriechbaumer V. (eds) The Plant Endoplasmic Reticulum. Methods in Molecular Biology, vol 1691. Humana Press, New York, NY.

 

Transfections performed before Feb.2017 cite:


PotatoStabile.doc
Stable Transformation protocol for potato

Transformation protocol for tobacco

Protoplasts isolation from leaves of Arabidopsis thaliana

Protocol for tomato stable transformation
Protocol for tomato stable transformation

 

Please cite for tomato transformations:

Wittmann et al. 2015. Plant Pathology. Doi: 10.1111/ppa.12417 onlinelibrary.wiley.com/doi/10.1111/ppa.12417/abstract

 

 

 

 

 

 

1. The unit offers Agrobacterium-mediated transformation of potato, tobacco and tomato.
2. Regenaration and cultivation of transformants.
3. PEG-mediated transformation of protoplasts from cell cultures or mesophyll cells (Arabidopsis or tobacco).
4. Production of cell cultures (wild type).




 

Fig. Z-stack image of protoplasts liberated from Arabidopsis thaliana leaf tissue.




 

 

Facs

Fig. Examination of the protoplat transformation efficiency by flow cytometric anaylsis (FCA).

 

Protoplasts isolated from root cell culture are transformed with a 35S::GFP construct (12kb) as a routine control. As an alternative to calculating the transformation efficiency, we have used FCA as a means for detecting cells expressing GFP. The negative population is marked in black. Cells that are strongly expressing GFP have a fluoresence signal that is well above that of the total plant cell population‘s green autofluoresence (cells marked in dark green); cells marked in light green are those with weaker GFP fluoresence emission. In this example 23% of the cells were transformed with GFP, and 50% of those are strongly expressing GFP.



 

 

Anja Hoffmann








Current Publications


Albert I, Böhm H, Albert M, Feiler CE, Imkampe J, Wallmeroth N, Brancato C, Raaymakers TM, Oome S, Zhang H, Krol E, Grefen C, Gust A, Chai J, Hedrich R, Van den Ackerveken G, Nürnberger T (2015). An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity. Nature Plants, 15140, doi: 10.1038/NPLANTS.2015.140.

J. Wittmann, C. Brancato, K. W. Berendzen and B. Dreiseikelmann (2015).
Development of a tomato plant resistant to Clavibacter michiganensis using the endolysin gene of bacteriophage CMP1 as a transgene.
Plant Pathology  DOI: 10.1111/ppa.12417

 

 

ZMBP Home

Contact

Dr. Kenneth Berendzen


ZMBP - Universität Tübingen
Auf der Morgenstelle 32
72076 Tübingen
phone 73223
email kenneth.berendzen[at]zmbp.uni-tuebingen.de




Caterina Brancato

ZMBP - Universität Tübingen
Auf der Morgenstelle 32
72076 Tübingen
phone 73223
email caterina.brancato[at]zmbp.uni-tuebingen.de